Volume 9, Issue 3, June 2020, Page: 64-70
Global Distribution of Surface Water Vapour Density Using in Situ and Reanalysis Data
Emmanuel Israel, Department of Physics, Federal University of Technology, Akure, Nigeria
Adedayo Kayode David, Department of Physics, Federal University of Technology, Akure, Nigeria
Ojo Olusola Samuel, Department of Physics, Federal University of Technology, Akure, Nigeria
Ashidi Ayodeji Gabriel, Department of Physics, Federal University of Technology, Akure, Nigeria
Emmanuel Grace Omolara, Department of Computer, Federal University of Technology, Akure, Nigeria
Received: Jan. 9, 2020;       Accepted: Jan. 21, 2020;       Published: Sep. 3, 2020
DOI: 10.11648/j.wros.20200903.12      View  52      Downloads  28
Abstract
Global spatial and annual distribution of surface water vapour density were estimated using 2005 -2016 monthly air temperature and relative humidity at 1° ×1° resolution obtained from Era interim and NCEP/NCAR database products. Obtained results from reanalysis were statistically tested using in situ data from Tropospheric Data Acquisition Network (TRODAN) of The Center for Atmospheric Research (CAR). Four seasonal variations of surface water vapour density (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) was examined. Observed result from the two reanalysis follow similar trends with value from Era interim leading. High values ranges between 50 g/m2 and 68 g/m2 were observed in tropical regions and humid sub-tropical regions. Low values ranges between 8 g/m2 and 38 g/m2 were observed in Ice cap, Tundra and arid regions. High warming may be experienced in tropical and sub-tropical regions, similarly, climate change with alarming rate may be experienced in locations with low values. The annual cycle of surface water vapor density is clearly established from two reanalysis across world classified into twelve regions. The statistical test for the reanalysis present good result with a mean bias error, MBE, root mean square error, RMSE and R square of 20.56, 18.29, 0.87 and 5.87, 0.98, 0.93 for Era interim and NCEP/NCAR respectively.
Keywords
Global, Water Vapour, Reanalysis, Warming
To cite this article
Emmanuel Israel, Adedayo Kayode David, Ojo Olusola Samuel, Ashidi Ayodeji Gabriel, Emmanuel Grace Omolara, Global Distribution of Surface Water Vapour Density Using in Situ and Reanalysis Data, Journal of Water Resources and Ocean Science. Vol. 9, No. 3, 2020, pp. 64-70. doi: 10.11648/j.wros.20200903.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Held, I. M., Soden, B. J.(2000). Water vapor feedback and global warming. Annu. Rev. energy Environ. 25, 441–475.
[2]
Zhao, L., Lee, X., Liu, S. (2013). Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America. J. Geophys. Res. Atmos. 118, 9552–9564.
[3]
Dai, A., Wang, J., Ware, R. H., Van Hove, T.(2002). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Res. Atmos. 107, ACL–11.
[4]
Khalameyda, D. D. (2011). Influence of fluctuations in the troposphere refractive index on the interferometer measurement accuracy of radio wave angles of arrival. Telecommun. Radio Eng. 70.
[5]
Khaniani, A. S., Nikraftar, Z., Zakeri, S. (2020). Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements. Atmos. Res. 231, 104657.
[6]
Zhao, Y., Gong, L., Zhou, B., Huang, Y., Liu, C. (2016). Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis. Biosyst. Eng. 148, 127–137.
[7]
Vaquero-Martínez, J., Antón, M., de Galisteo, J. P. O., Román, R., Cachorro, V. E. (2018). Water vapor radiative effects on short-wave radiation in Spain. Atmos. Res. 205, 18–25.
[8]
Dadson, S., Acreman, M., Harding, R. (2013). Water security, global change and land--atmosphere feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20120412.
[9]
van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., Kabat, P. (2013). Global river discharge and water temperature under climate change. Glob. Environ. Chang. 23, 450–464.
[10]
Adeyemi, B., Ogolo, E. O. (2014). Diurnal and seasonal variations of surface water vapour density over some meteorological stations in Nigeria. Ife J. Sci. 16, 181–189.
[11]
Wang, J., Zhang, L., Dai, A. (2005). Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res. Atmos. 110.
[12]
Dessler, A. E., Davis, S. M. (2010). Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res. Atmos. 115.
[13]
Serreze, M. C., Barrett, A. P., Stroeve, J. (2012). Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res. Atmos. 117.
[14]
Shi, Q., Liang, S. (2013). Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 1. Methodology. J. Geophys. Res. Atmos. 118, 9642–9657.
[15]
Wang, K., Ma, Q., Li, Z., Wang, J. (2015). Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos. 120, 6500–6514.
[16]
Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada, Y., Yasui, S., Miyaoka, K., Takahashi, K. (2011). The Japanese 55-year reanalysis ‘JRA-55’: an interim report. Sola. 7, 149–152.
[17]
Jia, B., Xie, Z., Dai, A., Shi, C., Chen, F. (2013). Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos. 118, 3431–3446.
[18]
Gil-Alana, L. A. (2005). Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J. Clim. 18, 5357–5369.
[19]
Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Glob. Environ. Chang. 9, 5–23.
[20]
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472.
[21]
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V. (2001) The NCEP--NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–268.
[22]
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, d P. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597.
[23]
Seidel, D. J., Fu, Q., Randel, W. J., Reichler, T. J. (2008). Widening of the tropical belt in a changing climate. Nat. Geosci. 1, 21.
[24]
Blok, D., Heijmans, M., Schaepman-Strub, G., van Ruijven, J., Parmentier, F. J. W., Maximov, T. C., Berendse, F. (2011). The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems. 14, 1055–1065 (2011).
[25]
Wooldridge, S. A. (2009). Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar. Pollut. Bull. 58, 745–751.
Browse journals by subject